Restoration of circadian behavior by anterior hypothalamic heterografts.
نویسندگان
چکیده
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus (AH) is a circadian oscillator and an important component of the mammalian circadian system. To determine whether the SCN is the dominant circadian pacemaker responsible for generating a species-typical characteristic of circadian rhythms [i.e., period length (tau)], neural transplantation was conducted using fetal AH donors of different species and SCN-lesioned (SCNx) hosts. The circadian behavior of each of the three donor species is clearly distinguishable by its species-typical tau. The extent of SCN pacemaker autonomy was assessed by noting whether the period of the restored circadian rhythm following heterograft transplantation was characteristic of the donor or the host, or whether an atypical circadian period was established. Hamsters rendered arhythmic by SCN ablation were implanted with AH tissue from fetal hamsters (E13-E14, homograft controls) or fetal mice or rats (E15-E17). The AH homografts restored circadian activity rhythms with a tau similar to that of intact hamsters, and fetal mouse AH heterografts restored circadian rhythmicity with a tau similar to that of the donor mouse strain. However, fetal rat AH tissue implanted into SCNx hamsters renewed circadian rhythmicity with a period significantly shorter than either the species-typical tau of the rat donor or the hamster host. In both the mouse and rat AH heterograft experiments, immunocytochemical analysis performed with species-specific monoclonal antibodies revealed extensive fiber outgrowth from the implant into the host hypothalamus, evident up to 7 months postimplantation. The rat implants were consistently larger, more fully vascularized and exhibited less necrosis than the implanted mouse tissue. The histological appearance of the grafts, thus, provides no explantation for the difference in efficacy of the grafts to restore species-typical behavior. However, several interpretations are considered that are consistent with the combined behavioral results observed.
منابع مشابه
Fiber outgrowth from anterior hypothalamic and cortical xenografts in the third ventricle.
Fetal grafts of the anterior hypothalamus (SCN/AH) containing the suprachiasmatic nucleus (SCN) restore circadian rhythms to SCN-lesioned host hamsters and rats following implantation into the third ventricle. Previous studies suggest that intraventricular SCN/AH grafts are variable in their attachment sites, the extent of their outgrowth, and the precise targets innervated in the host brain. H...
متن کاملCryptochrome-Deficient Mice Lack Circadian Electrical Activity in the Suprachiasmatic Nuclei
The mammalian master clock driving circadian rhythmicity in physiology and behavior resides within the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Circadian rhythms are generated by a set of clock genes via intertwined negative and positive autoregulatory transcription-translation feedback loops. The Cryptochrome 1 and 2 genes are indispensable for molecular core oscillator funct...
متن کاملCollective timekeeping among cells of the master circadian clock.
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the master circadian clock that coordinates daily rhythms in behavior and physiology in mammals. Like other hypothalamic nuclei, the SCN displays an impressive array of distinct cell types characterized by differences in neurotransmitter and neuropeptide expression. Individual SCN neurons and glia are able to display self-sustain...
متن کاملCircadian time-keeping system in birds: A review
In contrast to the highly centralised circadian clock in mammals, where the master clock resides in the anterior hypothalamic nucleus, as suprachiasmatic nucleus (SCN), the avian circadian timing machinery is more complicated with 3 circadian clock centresthe retina, hypothalamus and pineal. These three autonomous circadian oscillators interact with one another to regulate overt circadian rhyth...
متن کاملStandards of evidence in chronobiology: critical review of a report that restoration of Bmal1 expression in the dorsomedial hypothalamus is sufficient to restore circadian food anticipatory rhythms in Bmal1-/- mice
Daily feeding schedules generate food anticipatory rhythms of behavior and physiology that exhibit canonical properties of circadian clock control. The molecular mechanisms and location of food-entrainable circadian oscillators hypothesized to control food anticipatory rhythms are unknown. In 2008, Fuller et al reported that food-entrainable circadian rhythms are absent in mice bearing a null m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 15 3 Pt 2 شماره
صفحات -
تاریخ انتشار 1995